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1 Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México,
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Abstract
An su(1, 1) dynamical algebra to describe both the discrete and the continuum
parts of the spectrum for the Morse potential is proposed. The space associated
with this algebra is given in terms of a family of orthonormal functions

{
�σ

n

}
characterized by the parameter σ . This set is constructed from polynomials
which are orthogonal with respect to a weighting function related to a Morse
ground state. An analysis of the associated algebra is investigated in detail.
The functions are identified with Morse-like functions associated with different
potential depths. We prove that for a particular choice of σ the discrete and the
continuum parts of the spectrum decouple. The connection of this treatment
with the supersymmetric quantum mechanics approach is established. A closed
expression for the Mecke dipole moment function is obtained.

PACS numbers: 03.65.Ca, 03.65.Fd

1. Introduction

New experimental techniques based on lasers have allowed us to develop research in energy
regions where chemical activity becomes significant [1]. In particular, stimulated emission
pumping (SEP) spectroscopy and disperse fluorescence (DF) spectroscopy [2, 3] have been
widely used to study energy intramolecular vibrational redistribution, which represents a
physical process of significant importance to characterize the possible reaction pathways [4, 5].
The activation chemical reactivity implies dealing with breaking of molecular bonds to produce
a new rearrangement of atoms or even a dissociation process. In the description of these
phenomena the continuum part of the spectrum plays a preponderant role and consequently it
must be taken into account in any theoretical framework. Due to its importance, great attention
has been paid to incorporate the continuum, appropriately discretized, in the description of the
system [6–17].

Models based on a harmonic basis of the vibrational degrees of freedom are clearly
unsuitable, since a breakup threshold is non-existent in these models. This problem is
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overcome by the local models developed in the last three decades, where the vibrational
excitations are described by means of a set of interacting local oscillators associated with
local coordinates [18–22]. In these models the stretching vibrations are described by Morse
potentials, which incorporate the main characteristics of real diatomic systems, namely,
anharmonicity and dissociation [23]. This potential has the additional advantage of belonging
to the solvable-potential family, and consequently many analytical results can be used
[24, 25]. However, most of the studies using Morse oscillators consider just the bound
part of the spectrum [19–32]. Here, we propose a method for treating both the bound and the
unbound parts of the Morse spectrum on an equal footing.

In this work we present a complete basis for the Morse oscillator, which is given by a set of
orthogonal polynomials with respect to a weighting function determined from a Morse ground
state. This approach provides a family of suitable complete orthogonal bases to incorporate
both the bound and continuum states, and has the advantage that by choosing appropriately
the set of functions it is possible to decouple the discrete from the continuum part of the
spectrum. In addition, the Hamiltonian representation turns out to be tridiagonal, a fact of
practical consequences. This basis has already been proposed to describe the continuum using
different arguments based on supersymmetric quantum mechanics [33, 34].

The description of the Morse potential in terms of the proposed orthonormal basis can be
done in configuration space [16]. In this work we intend to establish an algebraic approach
to the problem. We establish the dynamical algebra generated by the basis. We show how
this identification allows us to obtain analytical formulae for the matrix elements of different
relevant operators, in particular those corresponding to the dipole moment. In section 2 the
basis is obtained as well as the associated raising and lowering operators, which are shown to
satisfy the su(1, 1) commutation relations. Section 3 is devoted to the analysis of the Morse
Hamiltonian. In section 4 an interpretation of the proposed basis is provided. In section 5 the
calculation of the matrix elements for the Mecke dipole moment function is included. Finally,
in section 6 the summary and conclusions are presented.

2. An orthonormal complete basis for the Morse potential

We start by establishing the bound solutions for the Morse potential. Choosing the limit of
the separated atoms as the zero of energy, the Morse potential has the following form [23]:

V (x) = D(e−2βx − 2 e−βx) (1)

where D > 0 corresponds to its depth, β is related to the range of the potential and x gives the
relative distance from the equilibrium position of the atoms.

The solution of the Schrödinger equation associated with the potential (1) is given by [23]

�j
v (y) = Nj

v e− y

2 yj−vL2(j−v)
v (y) (2)

where Ls
n(y) are the associated Laguerre functions, the argument y is related to the physical

displacement coordinate x by y = (2j + 1) e−βx, N
j
v is the normalization constant

Nj
v =

√
β(2j − 2v)�(v + 1)

�(2j − v + 1)
(3)

where v is a non-negative integer and j is a real positive value. They are related to the potential
and energy through

2j + 1 =
√

8µD

β2h̄2 j − v =
√

−2µE

β2h̄2 (4)
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where µ is the reduced mass of the molecule. Normalizable states fulfil v < j and the
corresponding energy spectrum is

Ev = −h̄ω(v − j)2 (5)

where

ω = h̄β2

2µ
. (6)

It is possible to obtain an algebraic representation of the solutions (2) by introducing creation
b̂† and annihilation b̂ operators [29], which have the following action on the functions (2):

b̂†�j
v (y) =

√
(v + 1)(1 − (v + 1)/(2j + 1))�

j

v+1(y) (7a)

b̂�j
v (y) =

√
v(1 − v/(2j + 1))�

j

v−1(y) (7b)

with

v̂�j
v (y) = v�j

v (y). (8)

The operators {b†, b} actually depend on j and v, which means that they are defined only in
the space of solutions (2). To simplify the notation, however, we prefer not to introduce this
dependence explicitly. A similar situation occurs with the variable y, which depends on j

and β.
The operators {b†, b}, together with the number operator v̂, satisfy the commutation

relations

[b̂, b̂†] = 1 − 2v̂ + 1

(2j + 1)
[v̂, b̂†] = b̂† [v̂, b̂] = −b̂ (9)

which can be identified with the usual su(2) commutation relations by introducing the set
of transformations {b† = Ĵ−/

√
(2j + 1), b = Ĵ +/

√
(2j + 1), v̂ = j − Ĵ 0}, where Jµ

satisfy the usual ‘angular momentum’ commutation relations [35]. The su(2) group is the
dynamical symmetry for the bound states for the Morse potential and any dynamical variable
can be expanded in terms of the generators

Gsu(2) = {b̂†, b̂, v̂}. (10)

The projection of the angular momentum m is related to v by [36]

m = v − j. (11)

From this relation we see that the ground state (v = 0) corresponds to m = −j . The states
corresponding to v � j , however, are not normalizable, and consequently

vmax = [j ] (12)

where the notation [j ] stands for the closest integer to j that is smaller than j . We shall thus
consider Morse potentials with [j ] + 1 bound states. In the algebraic space the functions (2)
acquire the simple form∣∣�j

v

〉 = N j
v (b̂†)v

∣∣�j

0

〉
(13)

with normalization constant

N j
v =

√
(2j + 1)v

�(2j − v + 1)

v!�(2j + 1)
. (14)

The Morse functions are then associated with one branch (in this case with m < 0) of the
su(2) representations. It is important to remark that in the su(2) space the Morse variable
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Figure 1. N = 6 basis for the Morse potential for the case σ = 1 (βx is dimensionless). In the
inset a Morse potential with j = 4 (energy given in units of h̄2β2/µ) is represented.

y, the coordinate x and the momentum p take the form of a finite expansion in the parameter
1/

√
(2j + 1) involving all allowed powers of the generators [31].
The bound solutions (2) do not form a complete set of states in the Hilbert space. A

complete set is obtained when the continuum part of the spectrum is taken into account.
Instead of considering the analytic solutions for the continuous part of the spectrum we shall
introduce a continuum discretization by means of a complete set of orthonormal functions.
We propose the following set of functions:

�σ
n (y) = Aσ

nL2σ−1
n (y)yσ e−y/2 n = 0, 1, 2, . . . (15)

with normalization constant

Aσ
n =

√
βn!

�(2σ + n)
. (16)

The family of functions (15) constitutes complete orthonormal sets Lσ , each of them
characterized by σ in the space L2[(0,∞), dy/y](the square integrable functions on the
(0,∞) interval, with respect to the measure dy/y). The proof that this family of functions
is a complete set is given, for instance, in [37] in which it is demonstrated that the system
xa/2 e−x/2La

n(x) is closed in L2(0, +∞) which is equivalent to saying that the system (15)
is closed and consequently complete in L2[(0,∞), dy/y]. In principle we can choose any
possible σ to describe the Morse states. We shall show however that a particular σ allows us
to split the bound states from the continuum part of the spectrum.

Once a value of σ is selected the infinite set (15) is complete, however in actual calculations
the basis is truncated. The procedure will be useful if the number of states to be considered
to provide a good approximation to the converged results for relevant observables is small
enough. In section 5 some of these convergence tests for the basis proposed are presented.

In figure 1 the first few basis wavefunctions for the selection σ = 1 are plotted as functions
of the dimensionless quantity βx, taking a basis of N = 6 functions. In the next section we
will use this basis to diagonalize the Morse Hamiltonian and will present some results for the
case j = 4 as an example. In the inset to figure 1 this Morse potential is plotted (energies are
given in units of h̄2β2/µ). It can be seen that the basis wavefunctions explore distances out of
the range of the potential.
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For the time being we shall consider σ as a free parameter. The Morse Hamiltonian can
now be diagonalized in the basis (15) to generate both the discrete and continuum parts of the
spectrum. Although this task can be achieved in configuration space [16], we shall follow an
algebraic procedure similar to that followed in the case of the bound states [29].

In accordance with the factorization method [38, 39], we proceed to obtain the ladder
operators for the orthonormalized basis. To this end we start by establishing the action of the
differential operator d

dy
on the functions (15):

d

dy
�σ

n (y) =
(

σ

y
− 1

2

)
�σ

n (y) + Aσ
nyσ e−y/2 d

dy
L2σ−1

n (y). (17)

Taking into account the recurrence relations [40]

y
d

dy
Lk

n(y) = nLk
n(y) − (n + k)Lk

n−1(y) (18)

−(n + k)Lk
n−1(y) = (n + 1)Lk

n+1(y) − (2n + k + 1 − y)Lk
n(y) (19)

we can define the rising, lowering and number operators

K̂− = −y
d

dy
− y

2
+ (σ + n̂) (20a)

K̂+ = y
d

dy
− y

2
+ (σ + n̂) (20b)

K̂0 = σ + n̂ = −y
d2

dy2
+

y

4
+

σ(σ − 1)

y
(20c)

with the following effect over the basis wavefunctions (15):

K̂−�σ
n (y) = k−�σ

n−1(y) with k− =
√

n(2σ + n − 1). (21a)

K̂+�
σ
n (y) = k+�

σ
n+1(y) with k+ =

√
(n + 1)(2σ + n). (21b)

K̂0�
σ
n (y) = k0�

σ
n (y) with k0 = σ + n. (21c)

As we can see, the operator K̂− annihilates the ground state �σ
0 (y), as expected from a

step-down operator. In equations (20a)–(20c) the operator n̂ is to be understood as a diagonal
operator

n̂�σ
n = n�σ

n (22)

similar to equation (8).
K̂0 together with the operators K̂± satisfies the commutation relations

[K̂+, K̂−] = −2K̂0 [K̂0, K̂−] = −K̂− [K̂0, K̂+] = K̂+ (23)

which correspond to the su(1, 1) algebra [41]. We now proceed to identify the quantum
numbers {σ, n} according to the standard representation [42]. The latter is found by examining
the formulae for the su(1, 1) discrete series representation.

The SU(1, 1) group is noncompact [41]. Unlike the case of SU(2) all its unitary
irreducible representations are infinite dimensional, and can be classified into three different
kinds, the principal (continuous), discrete and supplementary series [42, 43]. In this work
we shall be concerned only with the discrete series since the basis we are considering is
discrete. The SU(1, 1) generators K̂±,0 satisfy the commutation relations (23) and the discrete
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representations D+
κ of this group have the standard form

K̂+|κ,m〉 =
√

(m + κ)(m − κ + 1)|κ,m + 1〉 (24a)

K̂−|κ,m〉 =
√

(m − κ)(m + κ − 1)|κ,m − 1〉 (24b)

K̂0|κ,m〉 = m|κ,m〉 (24c)

where m can take the values

m = κ, κ + 1, . . . (25)

for the Bargmann index κ which characterizes the irreducible representation.
Since the generators (20a), (20b) and (20c) satisfy the su(1, 1) algebra, we need to

establish the connection between {κ,m} and the quantum numbers {σ, n} in order to recover
(24). This goal is accomplished by comparing the eigenvalues of the K0 operator. It is
straightforward to obtain that κ = σ and m = σ + n. Since n can take any positive integer
value n = 0, 1, . . . , we have

m = σ, σ + 1, . . . (26)

in accordance with (25). Finally, the Casimir operator can be written as

Ĉ = K̂+K̂− − K̂0(K̂0 − 1) = K̂−K̂+ − K̂0(K̂0 + 1) (27)

with eigenvalues

Ĉ�σ
n (y) = −σ(σ − 1)�σ

n (y) (28)

as expected.
Although the operators K̂± are not symmetrical, the unitary representation, equation (24),

assures that K̂± = K̂
†
∓ through the matrix elements

〈�n±1|K̂±|�n〉 = 〈
K̂

†
±�n±1

∣∣�n

〉 = 〈K̂∓�n±1|�n〉. (29)

We have thus established the algebra associated with the basis (15). These functions are
not eigenfunctions of the Morse Hamiltonian, but it is possible to express the Hamiltonian, as
well as any dynamical variable, in terms of the algebra

Gsu(1,1) = {K̂+, K̂−, K̂0}. (30)

Consequently, the su(1, 1) algebra can be considered as a suitable dynamical algebra for the
Morse system in the space Lσ . In this algebraic space, the basis (15) takes the simple form∣∣�σ

n

〉 = Gσ
n (K̂+)

n
∣∣�σ

0

〉
(31)

where the normalization constant is given by

Gσ
n =

√
�(2σ)

n!�(2σ + n)
. (32)

We now proceed to establish the Hamiltonian in the algebraic space (30).

3. Hamiltonian

In this section we shall write the Hamiltonian in the su(1, 1) space. In order to express the
Morse Hamiltonian

Ĥ = − h̄2

2µ

d2

dx2
+ D(e−2βx − 2 e−βx) (33)
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in terms of the su(1, 1) algebra, we first note that the potential (1) can be rewritten as

V (y) = D

(2j + 1)

(
y2

(2j + 1)
− 2y

)
(34)

and that the coordinate y and the momentum p̂ = −ih̄ d/dx = ih̄βy d/dy are related to K̂±
(20a), (20b) by

p̂ = ih̄β

2
(K̂+ − K̂−) (35a)

y = 2K̂0 − (K̂+ + K̂−). (35b)

Substituting (35) into (33), we obtain the Hamiltonian

Ĥ = h̄2β2

2µ

{−σ(σ − 1) + K̂0(2K̂0 − 2j − 1) + (j + 1/2)(K̂+ + K̂−)

− 1
2 [(K̂+ + K̂−)K̂0 + K̂0(K̂+ + K̂−)]

}
(36)

where we have taken into account that

D = h̄2β2

8µ
(2j + 1)2. (37)

The only non-null matrix elements of Ĥ in the basis (15) are given by

〈
�σ

n

∣∣Ĥ ∣∣�σ
n

〉 = h̄2β2

2µ
[−σ(σ − 1) + (σ + n)(2σ + 2n − 2j − 1)] (38a)

〈
�σ

n+1

∣∣Ĥ ∣∣�σ
n

〉 = h̄2β2

2µ
[(j − σ − n)

√
(n + 1)(2σ + n)] (38b)

〈
�σ

n−1

∣∣Ĥ ∣∣�σ
n

〉 = h̄2β2

2µ
[(j − σ − n + 1)

√
n(2σ + n − 1)]. (38c)

A remarkable property of this representation is that it is possible to choose the parameter σ in
such a way that the non-diagonal contributions vanish for a given n. Imposing this condition
on (38b), we have j − σ − n = 0, which means that

n = j − σ. (39)

We thus have that fixing the parameter σ we select n at which the Hamiltonian matrix splits
into two blocks. In particular, for σ = j − [j ] the first block corresponds to [j ] + 1 functions
and establishes a complete basis for the bound states.

As an example, for the case of a Morse potential with j = 4 and a basis generated with
σ = 1, in figure 2 we show the states obtained as the number of basis states increases from
4 to 20. As we can see the states are densely packed near the dissociation threshold, while
their density diminishes as the energy increases. The inset is a zoom of the low energy part.
Energies are given in units of h̄2β2/µ. It can be seen that, for this selection of σ with four
states in the basis, the bound states are reproduced exactly.

By choosing σ = j − [j ] it is possible to distinguish between the bound and continuum
parts of the spectrum. From the group theoretical point of view the su(1, 1) representation
corresponding to σ = j −[j ] provides a subspace carrying the su(2) irreps characterized by j .
Note that the block diagonal form of the Hamiltonian matrix implies the following orthogonal
relation between the basis states �

j−[j ]
n (15) and the exact Morse bound states �

j
v (2):〈

�j−[j ]
n

∣∣�j
v

〉 = 0 n � [j ] + 1. (40)
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Figure 2. Energy eigenvalues (dimensionless, in units of h̄2β2/µ), for the Morse potential with
j = 4 as a function of the size of the basis N generated for σ = 1. The inset is a zoom of the low
energy region.

This result can be obtained by the explicit calculation of the matrix elements but we present
now the reason for that. A Morse potential characterized by j has [j ] + 1 bound states which
are the only normalizable eigenstates of the Morse Hamiltonian in the complete Hilbert space.
If we take σ = j − [j ], we get that in our basis, equation (15), the states characterized by
n = 0, 1, . . . , [j ] decouple from the rest. Consequently, the eigenstates of the Hamiltonian
in this basis should be eigenstates of the Hamiltonian in the complete space too. Hence, the
basis functions with n > [j ], which obviously are orthogonal to the basis states with n � [j ],
must also be orthogonal to the actual bound states of the Morse Hamiltonian as stated in (40).

4. Interpretation of the basis Φσ
n(y)

In order to interpret the family of orthonormal functions (15) we shall introduce rising and
lowering operators of the Morse bound functions (2) which shift the number of quanta, as well
as the potential parameter j .

Applying the operator y d
dy

to (2), we have

y
d

dy
�j

v (y) = [− 1
2y + (j − v)

]
�j

v (y) + Nj
v yj−vy e−y/2 d

dy
L2(j−v)

v (y). (41)

If we introduce relation (18), the following equation is obtained:

�
j−1
v−1 (y) = N

j−1
v−1 e−y/2yj−vL

2j−2v

v−1 (y). (42)

We can introduce the operators

Â±(q) = ±y
d

dy
− 1

2
y + q (43)

where q is a parameter. It is straightforward to obtain the action of this type of operators on
the bound states for the Morse Hamiltonian, equation (2),

Â−(j)�j
v (y) = m−�

j−1
v−1 (y) with m− =

√
v(2j − v) (44)

Â+(j + 1)�j
v (y) = m+�

j+1
v+1 (y) with m+ =

√
(v + 1)(2j − v + 1). (45)
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From the definition of the Â operators it is clear that

[Â+(q), Â+(q
′)] = 0. (46)

The operators Â± correspond essentially to the operators T̂ ± given by Cooper et al [44], which
are related to the potential group approach for the Morse potential [45, 46]. The reason why the
operators (43) turn out to be similar to the operators associated with the Morse eigenfunctions
will become clear at the end of the section.

Now we can obtain the action of the new operators Â±(q) on our basis functions,
equation (15), using equations (21a) and (21b):

Â+(σ + n)�σ
n (y) = k+�

σ
n+1(y) (47)

Â−(σ + n)�σ
n (y) = k−�σ

n−1(y). (48)

Thus the action of the new operators Â±(q) on the basis wavefunctions and on the Morse
bound states is known.

Let us come back to the selection rule (40), but now from the point of view of the new
operators (43). From the definition of Â+(q) we can write the Morse wavefunctions in terms
of successive application of appropriate Â+ operators over �

j−v

0 (y),

∣∣�j
v

〉 = Bj
v

v∏
α=1

Â+(j − v + α)
∣∣�j−v

0

〉
(49)

where

Bj
v =

√
(2j − 2v)!

v!(2j − v)!
. (50)

From the expression of the Morse bound states, equation (2), and the definition of the basis
states in equation (15) the following equation is obtained:

�
j−v

0 (y) = N
j−v

0

Aσ
0

yj−v−σ �σ
0 (y). (51)

From the definition of the Â± operators the expression of y as a function of them can be
written as

y = q + q ′ − (Â+(q) + Â−(q ′)). (52)

With equations (49)–(52) the Morse bound states can be expressed as

∣∣�j
v

〉 = Bj
v

N
j−v

0

Aσ
0

v∏
α=1

Â+(j − v + α)[q + q ′ − (Â+(q) + Â−(q ′))]j−v−σ
∣∣�σ

0

〉
. (53)

Then the overlap between a basis state and a Morse bound state wavefunction is

〈
�σ

n

∣∣�j
v

〉 = Gσ
nBj

v

N
j−v

0

Aσ
0

〈
�σ

n

∣∣ v∏
α=1

Â+(j − v + α)[q + q ′ − (Â+(q) + Â−(q ′))]j−v−σ
∣∣�σ

0

〉
. (54)

The action of the operators Â+ and Â− on
∣∣�σ

0

〉
generates a linear combination of functions∣∣�σ

ζ

〉
, with ζ = 0, 1, 2, . . . , j − σ , as established by (47) and (48). Consequently, the overlap〈

�σ
n

∣∣�j
v

〉
reduces to a linear combination of products

〈
�σ

n

∣∣�σ
ζ

〉
, all of which vanish as long as

n > j − σ . This result, together with the selection σ = j − [j ], leads to the orthogonality
condition (40) previously obtained in coordinate space.

The operators Â± can help us in establishing a relation between our basis states and the
Morse wavefunctions. In the same way as in equation (49), from the definition for Â+(q)
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given above we can write the basis wavefunctions �σ
n (y) in terms of successive applications

of Â+ over �σ
0 (y)

∣∣�σ
n

〉 = Gσ
n

n∏
β=1

Â+(σ − 1 + β)
∣∣�σ

0

〉
(55)

with the normalization given by (32). Noting that
∣∣�σ

0

〉 = ∣∣�σ
0

〉
we can write equation (55) as

∣∣�σ
n

〉 = Gσ
n Â+(σ )

n∏
β=2

Â+(σ − 1 + β)
∣∣�σ

0

〉
. (56)

If we now identify the function
∣∣�σ+n−1

n−1

〉
according to (45), we have

∣∣�σ
n

〉 =
√

1

(2σ)n
Â+(σ )

∣∣�σ+n−1
n−1

〉
. (57)

If we now take into account that

Â+(σ ) = Â+(σ + n) − n (58)

we arrive at the result∣∣�σ
n

〉 =
√

(2σ + n)

2σ

∣∣�σ+n
n

〉 − √
n

2σ

∣∣�σ+n−1
n−1

〉
. (59)

The family of functions �σ
n (y) is then a linear combination of Morse-like functions with

potential parameters σ +n and σ +n−1. This result explains the resemblance of the operators
(43) to the operators obtained in the potential approach. The functions (15) turn out to be
Morse-like functions associated with different potential depths.

Finally, we should note that the Morse Hamiltonian can be factorized in the form

Ĥ = h̄2β2

2m
Â+(j)Â−(j) − h̄ωj 2 (60)

the expression for which is derived from supersymmetric quantum mechanics [47]. The matrix
elements of this operator in the basis

∣∣�σ
n

〉
are obtained by means of the transformations

Â±(j) = Â±(σ + n) + (j − σ − n) (61)

which when applied to (60), lead to the matrix elements (38). The connection of the operators
Â± with the factorization (60) is a consequence of the relation between the factorization
method and the concept of shape-invariant potentials discussed in supersymmetric quantum
mechanics [48].

5. Dipole function

Once the Hamiltonian has been diagonalized we obtain the energy spectrum as well as the
eigenfunctions. In general, a good description of the energy spectrum is not necessarily
accompanied by high quality of the eigenstates. It is thus necessary to check the eigenfunctions
through the evaluation of relevant observables. One of the most important observables is the
dipole transition operator. We shall thus present here the matrix elements of the dipole operator.

In general the form of the bond dipole function is not known. One possibility is to express
the dipole function as a Taylor series expansion around the equilibrium positions in terms of a
function of the instantaneous bond lengths. For instance, in terms of the variable z = 1−e−βx :

µ(x) =
P∑

p=0

zp

p!

(
dpµ

dzp

)
e

(62)
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where we have considered a finite sum. An alternative choice is the use of an analytical
function such as the commonly used Mecke dipole operator function [49, 50]

µ̂(x) = d0x
ξ e−γ x (63)

where d0 and γ are adjustable parameters. Often ξ is taken to be an integer �1. We thus
intend to obtain the matrix elements of (63) in the basis (15)

µmn = 〈
�σ

m

∣∣µ̂(x)
∣∣�σ

n

〉
. (64)

We shall not proceed directly with the calculation. Instead we first note that

µmn = d0(−1)ξ
∂ξ

∂γ ξ

〈
�σ

m

∣∣T̂ ∣∣�σ
n

〉
(65)

where

T̂ = e−γ x. (66)

We shall thus pay attention to the calculation of the matrix elements of the latter operator, and
later on recover the required matrix elements µnm through (65).

In the su(1, 1) space the matrix elements are given by

〈
�σ

m

∣∣T̂ ∣∣�σ
n

〉 = Gσ
mGσ

n

〈
�σ

0

∣∣ m∏
β=1

Â−(σ − 1 + β)T̂

n∏
β ′=1

Â+(σ − 1 + β ′)
∣∣�σ

0

〉
. (67)

Here we shall consider the case m � n only, since the matrix is symmetric. In order to
compute these matrix elements we first obtain the commutators

[Â−(q), T̂ ] =
[

1

β

d

dx
, T̂

]
= −γ

β
T̂ (68a)

[Â+(q), T̂ ] =
[
− 1

β

d

dx
, T̂

]
= γ

β
T̂ . (68b)

To compute (67) we use the relation

Â−(n) = Â−(m) + (n − m). (69)

There is a similar expression for the rising operator. Taking into account (68) and (69), we
obtain the following result,

〈
�σ

m

∣∣T̂ ∣∣�σ
n

〉 = f1(σ,m, n)

m∑
ζ=0

f2(σ,m, n, ζ )g(σ, j,m, n, ζ ;α) (70)

where we have defined α = γ /β, and the functions are given by

f1(σ,m, n) =
√

m!n!�(2σ + n)

�(2σ + m)
(71a)

f2(σ,m, n, ζ ) = 1

ζ !(m − ζ )!(n − ζ )!�(2σ + n − ζ )
(71b)

and

g(σ, j,m, n, ζ ;α) = �(2σ + α)

(2j + 1)α
(−α − n − ζ )m−ζ (−α)n−ζ (72)
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where (a)n stands for a Pochhammer symbol. The dipole matrix elements are obtained by
(65)

µmn = (−1)ξ
d0

βξ
f1(σ,m, n)

m∑
ζ=0

f2(σ,m, n, ζ )
∂ξ

∂αξ
g(σ, j,m, n, ζ ;α) (73)

where we have taken into account the chain rule
∂

∂γ
= 1

β

∂

∂α
. (74)

In particular, for the case ξ = 1, the first derivative is needed

∂g(σ, j,m, n, ζ ;α)

∂α
= g(σ, j,m, n, ζ ;α){ln(2j + 1) + ψ(m − n − α) − ψ(−α)

+ ψ(n − α − ζ ) − ψ(−n − α + ζ ) − ψ(2σ + α)} (75)

where ψ(n) is the digamma function. It is worth noting that this expression can give numerical
problems if α is an integer. In that case, one can make directly the derivative of equation (72)
using the following definition of the derivative of a Pochhammer symbol valid when a is a
negative integer:

d(a)n

da
=

{
(a)n

∑n−1
i=0

1
a+i

if n � −a

(−1)a(−a)!(n + a − 1)! if n > −a.

Let us come back to the dipole moment in terms of the expansion (62). If we were
interested in the first terms of the expansion only, we could directly use equation (35b):

z =
(

1 − y

2j + 1

)
= 1 − 1

2j + 1
[2K0 − K+ − K−]. (76)

However, a closed expression for any power of z can be obtained in terms of the matrix
elements (70). Since

zp = (1 − e−βx)p =
p∑

q=0

p!

q!(p − q)!
(−1)p−q e−β(p−q)x (77)

we have

〈
�σ

m

∣∣zp
∣∣�σ

n

〉 =
p∑

q=0

p!

q!(p − q)!
(−1)p−q

〈
�σ

m

∣∣T̂ ∣∣�σ
n

〉
(78)

where in this case α = p − q. We have thus provided closed expressions for both forms (62)
and (63) of the dipole functions. The matrix elements for the generalization of (63) to ξ > 1
can in principle be obtained by taking multiple derivatives of (70).

As an illustration of the results that can be obtained, we have performed a simple
calculation with the Mecke dipole operator function

µ̂(x) = x e−x. (79)

We use dimensionless variables in such a way that energies are given in units of h̄2β2/µ

and distances are given in units of β−1. We consider a Morse potential with j = 4
and calculate from the bound states the transition strength (S) and the energy weighted
transition strength (EW) defined as S(µ̂; n,m;N) = |〈N,m|µ̂|N, n〉|2 and EW(µ̂; n,m;N) =(
eN
n − eN

m

)|〈N,m|µ̂|N, n〉|2, where eN
n is the energy of the state n in a basis of N functions.

In figure 3 we present the strengths for a calculation with a basis with N = 20 states.
The left panels give transition strengths starting from different initial states: in the upper
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Figure 3. Transition strength to all states (left panels) and probability density for transitions to
the continuum (right panels) from the ground state (a), from an average with equal weights of all
bound states (b) and from the least bound state (c). The diagonal terms are also included. The
dipole operator used is given in equation (79). The calculation is done with a basis generated for
σ = 1 of N = 20 states for a Morse potential with j = 4. The probability density to the continuum
is represented as an histogram as explained in the text.

Table 1. Convergence of the total strength (S) and energy weighted sum rule (EW ) to the continuum
for the operator µ̂ = x e−x as a function of the discrete basis dimension generated for σ = 1 for
the Morse Hamiltonian with j = 4. Two cases are presented: one with the ground state as the
initial state and the other with the least bound state as the initial state. N is the total number of
basis states.

n = 0 n = 3

N S(µ̂, N) EW (µ̂,N) S(µ̂, N) EW (µ̂, N)

6 0.018 1201 0.203 022 0.046 1536 0.397 858
8 0.018 1261 0.202 675 0.048 5419 0.342 468

10 0.202 672 0.048 7340 0.338 792
20 0.048 7918 0.337 513
30 0.048 7931 0.337 464

Exact value 0.018 1261 0.202 672 0.048 7933 0.337 450

panel the initial state is the ground state (n = 0), in the middle panel the initial state is an
average with the same weight of all bound states and in the lower panel the initial state is
the least bound state (n = 3). The diagonal strengths are also included. The right panels
give the corresponding probability densities for transitions to the continuum. Since our basis
is discrete we have distributed the strength to each state Ei in the continuum in an energy
interval �Ei = [(Ei + Ei−1)/2, (Ei + Ei+1)/2] and represent it as an histogram. It can be
seen that the maximum of the distribution moves up in energy as the initial state is less
bound and the total strength to the continuum is larger also when the initial state is less
tightly bound. In table 1 we investigate the convergence of the total strength and the energy
weighted sum rule from the initial state n to the continuum as a function of the number of
basis states included. Both of these magnitudes can be calculated exactly and, in our case, are
S(µ̂; n,N) = ∑N−1

i=4 S(µ̂; n, i;N) and EW(µ̂; n;N) = ∑N−1
i=4 EW(µ̂; n, i;N), respectively.

In table 1 we present the results for two different initial states: the ground state (n = 0) and
the least bound state (n = 3). Table 1 shows that for the case starting in the ground state



1818 R Lemus et al

the convergence is fast and with N = 10 the exact values for both total strength and energy
weighted sum rule are obtained. For the least favourable case starting in n = 3 a basis of
N = 10 states (six states in the continuum) provides a good approximation to the exact values
(errors are of the order of 1 per thousand). It is worth noting that in figure 3(c) the transition
operator used populates very weakly (it is not seen on the scale used) the lowest energy state
in the continuum. This clearly deviates from the harmonic image and shows the anharmonic
nature of the potential.

6. Summary and conclusions

In this paper we propose an su(1, 1) dynamical algebra to describe both the discrete and the
continuum parts of the spectrum for the Morse potential. The basic idea consists in considering
the orthonormal polynomials with respect to the weighting function w(y) = e−yy2σ−1, which
define a family of possible bases to describe the complete spectrum of the system. In terms of
these bases the matrix representation of the Hamiltonian is tridiagonal, which is an advantage
when considering large bases. The raising and lowering operators associated with this family
of polynomials satisfy the su(1, 1) commutation relations. Particularly important is the case
of σ = j − [j ] (j is related to the depth of the Morse potential considered and [j ] is the
closest integer to j that is smaller than j ) for which the discrete and continuum parts of
the spectrum are decoupled. The orthogonality relation (40) associated with this property
is proved in both configuration and algebraic representations. We have also shown that
the functions (15) correspond to Morse-like functions associated with different potential
depths. This identification establishes the connection with previous analysis in terms of
supersymmetric quantum mechanics. In addition, an analytical expression for the Mecke
dipole moment function has been obtained. A general Taylor expansion of the dipole function
is also discussed.

In the algebraic approach the Hamiltonian as well as any dynamical variable can be
expanded in terms of the su(1, 1) generators. In particular, the momentum and the Morse
coordinate y turn out to be linear in the generators. This fact has important consequences
when dealing with realistic systems. The interactions of a molecular Hamiltonian can be
represented in exact form in the su(1, 1) space. This result is in contrast to the description of
the Morse bound states in the su(2) space (10). In such a case the momenta and coordinates
are expanded in terms of a series in terms of powers of the parameter 1/

√
2j + 1, which can

be cut reasonably up to order 1/
√

2j + 1, although in most applications only linear terms are
considered.

The linear representation of the coordinates and momenta in the generators of the su(1, 1)

algebra explains why the matrix representation of the Hamiltonian is tridiagonal. This result,
together with the fact that the matrix elements of the Hamiltonian have been obtained in closed
form, allows us to carry out calculations of realistic systems. In general, one of the advantages
of the algebraic approach consists in obtaining matrix elements in analytic form. In this vein
we have obtained a closed expression for the matrix elements of the Hamiltonian as well as
for the Mecke dipole function, which becomes important in the calculation of dipole transition
intensities.

In comparison with the description of the bound states in terms of the su(2) algebra,
the su(1, 1) framework has the advantage previously mentioned of considering in exact form
the expansion of the coordinates and momenta, although the dimension of the space may
increase considerably in order to take into account the continuum. We believe, however, that
in the framework of the su(1, 1) scheme it will be possible to deal with molecular systems
near the dissociation limit or even to study the dissociation process itself.



An su(1, 1) dynamical algebra for the Morse potential 1819

Acknowledgments

We are indebted to O Castaños and A Frank for fruitful discussions. This work is partially
supported by DEGAPA-UNAM, Mexico, under project IN101302-3 and DGI, Spain, under
projects BFM2002-03315 and FPA2002-04181-C04-04.

References

[1] Hollas J M 1998 High Resolution Spectroscopy (New York: Wiley)
[2] Kittrell C 1995 Stimulated Emission Pumping by Fluorescence Dip: Experimental Methods, Molecular

Dynamics and Spectroscopy by Stimulated Emission Pumping (River Edge, NJ: World Scientific)
[3] Dai H-L and Field R W 1995 Molecular Dynamics and Spectroscopy by Stimulated Emission Pumping

(Singapore: World Scientific)
[4] Crim F F 1996 J. Phys. Chem. 100 12725
[5] Nesbitt D J and Field R W 1996 J. Phys. Chem. 100 12735
[6] Wigner E P and Eisenbud L 1947 Phys. Rev. 72 29

Burke P G and Berrington K A (ed) 1993 Atomic and Molecular Processes: An R-Matrix Approach (Bristol:
Institute of Physics Publishing)

[7] Rotenberg M 1970 Adv. At. Mol. Phys. 6 233
[8] Antonsen F 1999 Phys. Rev. A 60 812
[9] Szmytkowski R and Zywicka-Mozejko B 2000 Phys. Rev. A 62 022104

[10] Tolstikhin O I, Ostrovsky V N and Nakamura H 1998 Phys. Rev. A 58 2077
[11] Lovas R G, Liotta R J, Insolia A, Varga K and Delion D S 1998 Phys. Rep. 294 265
[12] Austern N, Iseri Y, Kamimura M, Kawai M, Rawitsher G and Yahiro M 1987 Phys. Rep. 154 125
[13] Stoitsov M V, Ring P, Vretenar D and Lalazissis G A 1998 Phys. Rev. C 58 2092
[14] Stoitsov M V, Nazarewicz W and Pittel S 1998 Phys. Rev. C 58 2086
[15] Stoitsov M V, Dobaczewski J, Ring P and Pittel S 2000 Phys. Rev. C 61 034311
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